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In [I], the motion was considered for a mass of air heated to a high temperature and 
initially at rest in a spherical volume under gravity. At the start of the motion, the vol- 
ume is transformed to a buoyant vortex ring. The turbulent transport in the vortex ring mo- 
tion is described by a samiempirical theory, which incorporates the effects from the velocity 
and temperature inhomogeneity, which tend to suppress radial turbulent diffusion fluxes at 
the core. Numerical calculations have given the distributions for the velocity, vorticity, 
temperature, and heat fluxes. The toroidal vortex is clearly seen, whose disposition in 
space coincides with the toroidal temperature pattern. 

At an early stage, the main part is played by inertial dynamic effects associated with 
the generation of the vorticity, which transforms the spherical volume of light gas into a 
rising vortex ring. The effects from turbulent exchange in the initial stage are neglected 
because they are slight. The ring formation is described by gas-dynami c equations, which are 
solved numerically via the [2-4] scheme, which has low scheme viscosity. The gas-dynamic pa- 
rameter patterns calculated for the formation of the toroidal vortex act as initial ones for 
calculating the flow structure in the next stage. 

Our numerous calculations on structures in thermals have shown that the vortex flow has 
a decisive effect on the dynamics. One has anisotropy in the turbulent transport, with the 
turbulent fluxes of heat and momentum diminishing toward the ring axis, which means that the 
form of the thermal persists for a long time during the rise, while the cross-sectional area 
of the core increases somewhat, as is observed in [5]. 

Later calculations were performed on these rings without allowance for the turbulent ex- 
change at the stage of developed vortex motion, which showed that there are only minor dif- 
ferences in the height to which they rise. This shows that there is a decisive influence 
from inertial dynamic effects associated with the generation of the vorticity field under 
gravity as regards the rise of a large-scale thermal formation in the atmosphere. 

I. This method is applied to experiments on thermals rising in the atmosphere [6] and 
under laboratory conditions [7]. The velocity and temperature patterns have been calculated 
without allowance for the turbulent transport. Those patterns have then been used to deter- 
mine the turbulent characteristics on the assumption of local balance in the turbulent motion. 
One can judge the justification for this approximation from a comparison with experiment. 

We used an r, z, ~ cylindrical coordinate system. The z axis is directed in the opposite 
sense to the gravitational acceleration. All the functions are dependent only on r and z. 
The gas-dynamic equations are 

0 0 . 1 
o--/p + d i v  (oV) = O, 7 ,  V -~- ( V . v )  V ---. - -  T VP + g, 

p = (~ - -  t ) 9 e ,  e : cvT ,  V = (U, V). 

(i.i) 
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Here p, p, and T are the pressure, density, and temperature, U and V are the velocity compon- 
ents along the r and z axes, c V the specific heat at constant volume, and ~ the adiabatic pa- 
rameter. 

A finite-difference net containing rectangular cells is introduced, whose boundaries are 
displaced in space on a definite law in such a way that the thermal remains approximately at 
the center of the working region. 

2. A method of deriving the turbulence spectral characteristics is considered. The 
local-balance hypothesis is applied to the equations for the turbulent energy and the turbu- 
lent pulsation intensity, which gives 

2 EdivV__Ka(21{aU)~ :OV'i~-, (rU___)~ ] (~V c~U'i~ } -7  [ \~ :  + \ & /  -;- + 7 7  + az/ - - 2 ( d i v V ) ~  + e ~ = 0 ;  (2.1) 

t:-K,,+; K,:aT:  W: (K_K~, )~F , .~+e  o = O, 
~.~-2 \Or/ + ~; ~ + 2V~ (2 .2)  

in which E is the kinetic energy in the turbulence, s t = BIES/a/Ln the turbulent energy dis- 
sipation rate, ~@ = (c~4/B)(El/~<@2>/Ln) the rate at which the pulsating temperature field 
is smoothed out, Vs 2 = U 2 + V 2, K s = BLs EI/2, and K n = BLn EI/2 the turbulent viscosity coef- 
ficients along the tangent and along the normal to a stream line, L s = ~sL the turbulence 
scale along the tangent to a stream line, L the characteristic flow dimension (diameter of 
the rising thermal), L n the scale of the turbulence along the normal to a stream line, 

the relation between the turbulence scales, which was introduced in [i] to incorporate the 
anisotropy in the turbulent transport, R n the radius of curvature of the stream line, z = 
ALe E-I/2 the time scale of the turbulence,<O2>the temperature pulsation intensity, and 3/On 
the derivative along the normal to the stream line. Values used for constants: ~i = 0.i, 
~2 = 0.i, ~3 = 0.01, A = 3.86, B = 4/3, $4 = 0.7, c = 0.325, B z = 0.26. 

The effects were incorporated from the vorticity at the core of the vortex on the turbu- 
lent transport parametrically at each point with the local radius of curvature for the stream 
line. 

The [8-Ii] algorithm was used to determine the spectral and integral characteristics, 
where approximations were used for the spectrum in the low wave number range and in the iner- 
tial and dissipative subintervals [12, 13], for which we constructed a universal spectral 
dependence (generalized Karman model), which approximated the spectrum throughout the wave- 
number range for the scalar field for a homogeneous isotropic distribution* (here the sim- 
plest model, Pr ~ i): 

Eo B------C---~ exp[ - 3 Al(y+yo)2/3], u = ~  2. = AI~(v +yo)l~ ~ Y 

The one-dimensional spectrum is derived from 

hl 0 

In this model, the spectra are dependent on S and Rex: 

~= - -  F (17-.. R % ) ,  = 

......... E0 

It was assumed that the spectral distributions in the real flow, which are represented 
in correspondingly normalized form, are close to these universal distributions with the io- 

*P. G. Zaets derived the spectral distribution in the form given here. 
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cally determined Re I and S. The error is dependent of course on the inhomogeneity and lack 
of isotropy in the flow. Here S = Pel@2/RelPr I/2 is a parameter enabling one to represent 
the spectral dependence in universal form, while Re I = ((2/3)E)I/2(l/~), Pel8 = ((2/3)E) I/2. 
(18/D) are the Reynolds and Peclet numbers corresponding to the Taylor microscales, Pr = 
v/D is the Prandtl number, 12 = 10vE/Et, 182 = 12D<02>/s are the Taylor microscales for the 
velocity pulsations (transverse) and temperature, q = (v3/et)I/4, q8 = (D3/et)I/4 are the 
Kolmogorov and Corrsin microscales, v the kinematic viscosity, and D the thermal diffusivity. 

The integral correlation scales are defined from formulas that approximate the calculat- 
ed curves: 

.v,1 = ~ '  [~,~7 + o ,oa  n ~ "  ( R ~  ~ - 1)], 

A o / q o  = ~a(3~20) l'Elo(k~ = O)/S. 

The algorithm defines the following: E, at, <02>, and ~6 from (2.1) and (2.2) with the (i.I) 
gas-dynamic parameter patterns; the microscales I, 18 , G, q0, the parameters Rel, S, Rex0, 
and the integral scales A and A6; and from the Re I and S at each point in the flow, estimates 
for the approximate spectral distributions for the pulsations in the velocity E and tempera- 

ture E0. 

3. The calculations gave the behavior of the flow parameters for the case examined by 
experiment in [6]: A mixture of oxygen and methane is pumped into a spherical shell, and 
detonation gives a high temperature, which causes it to rise. Thermoanemometers 18 m above 
the center of the balloon recorded the temperature, flow speed, and spectral distribution 
for the temperature pulsations. Cinematography was used to record the external thermal pat- 
tern. We also determined from outside the maximum temperature as a function of time. The 
following initial conditions were selected from the measurements for calculation: tempera- 
ture of the thermal To = 2500 K, radius a0 = 13 m, and position of the center of the thermal 
above sea level H0 = 1800 m. The conditions in the surrounding medium corresponded to a 
standard atmosphere. 

The gas-dynamic parameter calculations showed that a rising vortex ring forms from the 
initially spherical thermal. Initially, a vortex layer is formed near the boundary, and at 
4-5 sec after the start of rise, this twists and forms the core of the vortex ring. 

Figure 1 shows the calcuiated patterns for the temperature, vorticity, and velocity at 
i0 sec after the detonation. Figure 2 shows the flow structure at the core of the vortex at 
5 sec: the distributions of T, (rot V~ and V along a horizontal axis passing through the 
center of the vortex. There are two peaks in the V distribution, which represent the bound- 
aries of the vortex core, where also the main vorticity and buoyancy are localized. The ex- 
periments show that the toroidal form is produced in 4-5 sec after detonation. Figure 3 
shows the height to which the center of the thermal has risen H - H 0 as a function of time 
(curve 1 from experiment, curve 2 from theory), while Fig. 4 shows the radius of the ring 
axis R l as a function of time (curve 1 from experiment, curve 2 from theory). There is sat- 
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isfactory agreement between theory and experiment. Figure 5 shows the time course of the 
averaged gas teanperature, the temperature pulsation, and the Taylor microscale for the tem- 
perature pulsations (line i from theory, line 2 experimental data from [6]). There are 
three intervals, which correspond to the upper edge of the thermal passing through the sen- 
sor system, the central part, and the lower edge. There is good agreement here also. 

In [6], values were given for the local Reynolds turbulence number Re A = 2000 and the 
integral scale A0 = i m. The values obtained in the calculations were Re X = 1800, A 8 = 1.2 
m. The calculated S patterns enable one to estimate some major spectral characteristics in 
the turbulence. 

Figure 6 gives the experimental data for the one-dimensional spectral distributions of 
the temperature pulsations as a ~mction of the normalized frequency (n frequency, Yz sensor 
signal autocorrelation time) and of the normalized wave number kA 0. In the region of large 
wave numbers, the spectrum is closely approximated by a -5/3 law. Curve I from [6] is 

ELo(n)/E~o(O) = I t - k  (2~n~1)2]-I = [ l  + (kAo)~ ]  -1 

and approximates the experimental results, with the approximation deteriorating for kA@ > 100, 
while curve 2 is the approximation for the temperature pulsation spectrum constructed via the 
above algorithm for the estimated S, which is approximately 270. Curve 2 fits the experimental 
results satisfactorily throughout the wave-number range. 

4. One can compare the calculations on thermals in the atmosphere with the [7] experi- 
ments from the viewpoint of similarity in structure development for various initial dimen- 
sions. In [7], the vortex ring formation was examined for buoyant volumes of a light gas 
mixture having initial dimensions a 0 = 0.02-0.08 m and relative density differences ~ = Ap/ 
Pa = (Pa " P)/Pa = 0.06-0.83 (Pa is the gas density in the surrounding medium, while p is 
the density of the gas mixture in the thermal). One uses the variables z' = z/a0, t' = t~ 
(a0Pa/gAp) I/= to compare the calculations on the structure with the [7] measurements: on the 
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transformation Of a spherical volume of light gas into a toroid. The symbols in Fig. 7 de- 
note the data from laboratory experiments [7] on the time positions of the top edge 1 and 
lower edge 2 of the model and the upper edge 3 of the jet from the surrounding air layers 
entering from below along the vertical into the thermal, which transforms the thermal into 
a toroidal buoyant vortex ring. These data have been obtained by visualizing the flow pat- 
tern with an optical knife-edge. Here we give the corresponding curves derived in calcula- 
tions with the markers initially placed in the surface layers of the spherical thermal. The simi- 
larity expresses the fact that one always gets thesame process generating the vorticity pattern. 

We now consider the applicability of the [i, 7, i0] method as improved here for deter- 
mining the structure and seek to judge the adequacy of the physical principles used there as 
regards actual physical processes. The main established fact is that vorticity pattern gener- 
ation processes predominate in the formation and evolution of thermals in a gravitational field. 

Khristianovich in 1954 devised a general scheme for the flow in a large-scale thermal, 
together with the main element: representation of a thermal as a buoyant vortex ring [14]. 
We are indebted to S. A. Khristianovich for constant interest in the work and fruitful dis- 
cussions. 
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VARIATIONAL PRINCIPLES FOR TWO-PHASE INFILTRATION 

INTO A DEFORMABLE MEDIUM 

P ,  A. Mazurov UDC 532.546 

Here a method is proposed of constructing dual variational principles for two-phase in- 
filtration into a deformable medium. The construction is based on variational treatments 
compiled for dissipative and elastic potentials, whose solutions are equivalent to the laws 
of behavior for the solid and liquid phases. The variational principles enable one to use 
the known porosity and saturation to determine the displacement and stress patterns in the 
solid phase and the pressure and velocity patterns in the liquid ones. In the case of two 
phases, we have variational principles for consolidation theory and two-phase infiltration. 

i. Consider two-phase infiltration into a viscoplastic medium. We write [I] the equa- 
tion of continuity for the solid phase 

(t  - -  m),~ + d ~  ( ( i  - -  m ) ~ )  = O; 

the equations of continuity for the liquid phase 

(1.1) 

the equilibrium equation 

(ms),t -.~ d i v ( r n s v l )  = O; 

( m ( t  - -  s)),t - i  d i v ( m ( l  - -  .s')v.,) = O; 

/ 
o i L J - - P J  ~ O; 

the relation between the pressures in the liquid phases 

(1.2) 

(i.3) 

(1.4) 

Pl -- P2 = Pc 

and the entropy production in the energy representation for T I = T 2 -- T 3 -- const [I]: 

y~ / p 
: csi~e~ -- q l " V P ~  -- q'-," VP2.  

(1.5) 

Here u is the vector for the solid-phase displacement; v I and v 2 the velocities of the liquid 
phases; m porosity; s saturation in the first phase; oijf the components of the tensor for 
the effective stresses of; p = spl + (i - s)p2 the mean pressure; Pl and P2 the pressures in 
the liquid phases; Pc = Pc (s) the capillary pressure step; eijP = (I/2)(ui, j + 9j,i) the com- 
ponents, of the tensor for the rates of the viscoplastic strain eP; ql = ms(vl--u), q2 =m(1-- 
s)(v 2 -- u) the phase infiltration rates; and TI, T2, T 3 the absolute temperatures in the phases. 

We introduce the symbols XI =--VPI, X2 =--VP2, Xs =~, Y~ =ql, Y~ = q~, Y3 =eP (X = (XI, 

X=, Xa) for the generalized forces and Y = (Y~, Ys, Y3) for the generalized velocities. To 
close system (1.1)-(1.5) we use the normal dissipation hypothesis [2, 3], on which there is 
a dissipation potential ~(Y) and a convex semicontinuous eigenfunctional from below such thai 
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